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Solutions of the problem of the action of an inclined ring punch on an elastic half-space are constructed using asymptotic methods 
[1-3], with the usual assumptions that there are no friction forces in the contact region between the punch and the half-plane 
and that the surface of the half-plane outside the contact area is not loaded. The solutions are obtained in the form of simple 
formulae for large and small values of the dimensional parameter k, which represents the relative thickness of the ring. These 
solutions overlap one another with a high degree of accuracy in a certain intermediate range of variation of Z.. © 1996 Elsevier 
Science Ltd. All rights reserved. 

This problem has been investigated previously by many researchers in a similar formulation. In particular, 
we draw attention to the papers [4--6]. Here we obtain a comprehensive solution of the problem, enabling 
a complete qualitative and quantitative analysis of the problem to be carried out. 

1. According to 1the classical scheme (see, for example, [7]) the problem of a ring punch (see Fig. 1) 
can be reduced to determining the contact pressures q(r, ~) from the integral equation 

b 2:x 
I J q(p,~)pdpd~ :21tOS(r,~) 
a C, R 

(R..=[r 2 +p2_2rpcos(t~_~)]~,  0 = G / ( I - v ) ,  a ~  < r ~  < b, t~[0 ,2n) )  (1.1) 

where a and b are the inner and outer radii of the ring region of the contact, 8(r, ~) is the residue of 
points of the surface of the elastic half-space in the contact region, and G and v are elasticity constants. 

Further, using the integral [8, 6.511(1)] and relation [8, 8.531(1)] 

Jo (uR) = Jo (ur)Jo (up) + 2 ~ Jm (ur)Jm (up) cos m(¢~ - ~t) 
m =  ] 

where Jm(x) are Bessel functions, we can reduce Eq. (1.1) to the form 

(1.2) 

,b 2n 
[ ~ q(p,•)[ko(r,p)+2 ~ k,,(r,p)cosm(t~-~)]pdpa~=2nO~(r,¢~) (1.3) 
'J 0 m=l 

where the kernels kin(r, p) have the form 

k,, (r, p) = ~ J,,, (ur)J,,, (up)du (1.4) 
o 

Using the integral [8, 6.512(1)] and one of the identical transformations of a hypergeometrie series 
[8, 9.134(3)], we will have 

k~,(r,P)=22m(2m)!!(r+p)F m+ 1, m+~,  2m+l,e  2 e= (1.5) 

where (F(oL, fl, ~, x) is the hypergeometric series. Finally, using the integral representation of a 
hypergeometric series [8, 9.111], we can rewrite (1.5) in the form 
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Fig. 1. 

e2m i tm-~(1-t)m-~(1-e2t) -m-~dt km(r,p) =/t(r+p) o (1.6) 

For any m the integral in (1.6) can be expressed by a linear combination of complete elliptic integrals 
K(e) and E(e). For example, for m = 0 and m = 1 we have, respectively 

2 K(e), kl (r,p) = 2 [(2_e2)K(e)_2E(e)] (1.7) k 0 (r, p) = 7t(r + p-----~ /t(r + p)e 2 

It is important to note that the kernels km(r, p) can again be represented by the integral 

k m ( r , P ) = - ~  i Lm:S)cos(slnp) ds 

Lra(s) = sF(~ + is l 2 + ml 2)F(~-is l 2 + m l 2) 
2I ' (~  + is 12 + m 12)F(~ - is 12 + m 12) 

where F(z) is the gamma function. Here we have used the relation 

(1.8) 

~ J'n(t)Jm(tpldt= 1 2Xic~_i:(s) p(rl-Sds 

F ( s / 2 + m / 2 ) F ( ~ - s / 2 + m / 2 )  
g ( s )  = 

2F(1-s l2+ml2)F(~+sl2+ml2)  
(1.9) 

obtained using the formulae for the direct and inverse Mellin transformation of a Bessel function [9]. 
We expand the functions q(p, ~)  and 8(r, ¢) in (1.3) in Fourier series 

q(P, W) = qo (P) + 2 ~ [q. (p) cos n W + gi. (P) sin n~] 
n = l  

5(r,t~) = 5o( r )+2  ~ [8.(r)cosnO+~(r)sinnO] (1.10) 
n=l 

Then, evaluating the integral over W in (1.6) and equating the coefficients of similar cosng~ and sil~g~ 
terms on the right and left we obtain 

b b 

7t I qn (p)k n (r, p)pdp = 08. (r), • I ql (P)kt (r, p)pdp = 0 ~  (r) (n = O, 1) (1.11) 
a a 

and so on. For a plane inclined ring punch ~0(r) = 5, 81(0 = ar ,  ~l(r) -- ~r, all the remaining ~n(r) and 
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~n(r) are equal to :,ero, and all the qn(r) and ~ ( r )  will respectively be equal to zero for n ~> 2. Here 
is the translational displacement of the punch along the z axis, and a and I~ are its angles of rotation 
with respect to the y and x axes. 

Thus, the problem of a plane inclined ring punch has been reduced to solving integral equations (1.11). 
To complete the formulation of the problem we need to add the conditions of  equilibrium of the punch 

b 

a = 2~ I q0(P)pdp 
a 

I, b (1.12) 
M x = Qey = g,i" qt(p)p2dp, My =.Qe x = ~j" ql(p)p2dp 

a a 

where ex and e.. are the projections of the point of application of  the impressing force Q onto the x and 
• . ~  . . • 

y axes. Conditions (1.12) serve to deternune the relationships between Q and ~i, ex and o., ey and 6. 

2. We will first consider the case of a relatively narrow ring. We make the following change of  variables 
in the integral equations (1.11) 

r=aexp[(l+x)/X], p = a e x p [ ( l + ~ ) / X ] ,  X=2[ln(b/a)] -l (2.1) 

and introduce the following notation 

P0(~) = P~q0(P) (~)_  pY2qIIP) _ P~ql(P)  ' p '  - 

, , , , < , ,  = 

(2.2) 

where sch(x) is the hyperbolic secant. Equations (1.11) can then be rewritten in the form 

I p,({lM, d~ = nXexo +n  (n = 0,1) 
-1 

(2.3) 

It is important to note that the kernels Mo(t) and Ml(t) of Eqs (2.3) can be represented using 
expressions (2.2) and expansions of the complete elliptic integrals for values of the argument close to 
unity ([8, 8.113(3)] and [8.8.114(3)]), in the same form 

i ai t2i + lnltl i bi 12i (2.4) 
i=0 i=0 

where the series converge absolutely when I t I < n. Here for Mo(t ) we have a 0 = 2.079, a 1 = -0.1091, 
a2 = 0.005352, b0 = -1, b I = 0.06250 and b 2 = -0.003581, and for Ml(t ) we have a 0 = 0.07944,a 1 = 0.2857, 
a2 = 0.004494, b0 =: -1,  bl = -0.1875 and b2 = 0.0009766. Hence, further consideration can lead to the 
single equation 

1 [~0 (x_~12i+lnX_~vZbi~.__~ t ' x _ ~  2i]1 
j I X  h:o 

( 2 . 5 )  

where cp(~) = P0(~), IX = 1/2 in the case of the first equation of (2.3) and tp(~) = Pl(~), ! x = 3/2 in the 
case of the second equation ot  (2.3). 

For sufficiently large values of  the dimensionless parameter X (X > 2/rQ, i.e. for a relatively narrow 
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ring, the asymptotic solution of integral equation (2.5) can be constructed by the standard method 
described, for example, in [3]. We will give the final formulae 

~O(x) = ~0 0 (~,, X) + ~,-2~1 (~,, X) + ~,"4~0 2 (~L, X) + O(~L ''6 ) 

g)O(~,, X) = -~ - [CoXQ 0 + 2ciQ 1 + 3c2xQi + 4c3Q 2 + 5c4xQ 2 + 6c5Q 3 ] 

~, x 1 ~2PA(3~ 2 
q31(, ) = ~ l ' - - ~ ' - ~ ) Q l - c o [ A ( 1 ) x Q ~ + b l X Q l ] + C l b l ( Q l - - ~ Q 2  1 -  

~ C 2 

g~2 0~, X) = - -  l__~X2 {4P [ - - B - - Q 2  ( : : )  + -~ B ( ~ ) Q ! 3  13 +I.~blA(.~)(_.~QI+3Q2)]_ 3 1 

-Co(3B(5)xQo+6B(~oo)XQ, +b2xQ2+ 

P = 7tO(~,)[O(X,)] -1 

3 15 1 1~(~)=c_1+1c1+-~c3+-~c5- -~(c1+c3)A(3~+ 1 , C l b l A ( 3 ~ - £ C l B ( 4 ~  
\ 2 J  12~? ~.2J ~," k.3J 

+---1 A ( 1 ) - G  [ ( ~ ] A  3 2+ 9._~B(7. ~ 4 x  4 ~,6) O(~')=l.n2~'+a0 ~2 4~ L \2 J J  

2 3 ~4 ~5 ~t 6 
+ 

2X 6L" 2 - ~ + ~  720# 
• 2 . 3 . 4 [Lj5 ~ 6  

Co =~+~_.__+ /. t  + ~ + 
~, 2~," 6~," 2"~-÷120~, 5 

I,L 2 ~3 ~4 ~t5 ~t6 

q = + 1 - iV*  48 5 

~3 . 4 5 6 1.1.4 . 5 i.i,6 
C2 = ~ - . ~ - + ~ 3  + ~[', + ~- , C3 =..1....m+ ~ + • 12~,* 36~, ~ 24L" 24~,* 48~, 5 

~t 5 ~t 6 kt 6 
c 4 = ~ ~  120~:' cs =720L 5 

Q o = - l ,  Q I = - X 2 +  1 Q2=-x4 +lx2 + 1, ~=_x6 +lx4 +lx2 + l  
' 2 8 2 8 16 

A(7)=txl +yb I - b  I 1n27~, B(~')=a 2 +yb 2 - b  2 ln2X 

(2.6) 
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Further, from (11.12) we obtain the forces acting on the punch 

0-'bg = exp - P 1 +~-~+ l--g-~-+ 9--~3 + 3072----~+ 10240k 5 - 

"12k 4 A 1+ + ~ c 0 1 ~  + ---"~ + "-"---"~ + "----'-r + "--""-~ + \ 4 k  8k ~ 128~, ° 768~2 4096L ~ 

1 1 1 4 1 3 5 3 23 
+~o~s A -  + ~ - - B -  + - b i A -  + + 4 @ 3 A ( 5 ) ( 1 + 2 " ~ + 8 ~  2)  1283; ( 3 /  2 k i 2  ( 4 )  8 (18 )  

l 

2 \27 \4JJ/  \32k" 64~,: 
7 b I "~ F 3  

+ 1536 4 

3 + 1 +_...L A 4 +gc~ 1 5 +O ( 1"]], 
+]54~, 2 32~, 3 16k 3 ( 3 ) ]  " 3 - ~ + g c 4 3 " ~  tV)J (2.7) 

M M,, n ( 6 ~ / _ [  3 27 45 945 5103 

t JtG_ 1+ ~b3; = ~ = -~exp - 7  2-~+ 1 - ~ +  3 " ~ + ~  "t 10240~, 5 

9 /~¢1+.3._3 /.~_3 + 9 + ~ + ~ +  + 
32~, 4 A + ~c o \2J~, 2Z, J.] \ 4 k  8~ z 128~, 3 256~, 4 20480k 5 

3 5 3 9 27 4 + ~ A ( _ f f  l+__+.g.TT)+.._.__rA(_~ + 3 [3 B(5")+3 b a(23"]+ 
4~ ~,4J\ 2~ 8~ ) 128~ ~ k, 3J 2 -~L2  ~,~) 8 ' ~,i-ff) 

l ( 1 3  ( 5 ) ] }  ( 9 27 189 3b, ) [ 1 - ~  
+~A ~ A -~ +rw I 3-~+~--~T3 ~ 512k 4 32~" 4 +gc  2 + 

27 27 9 4 9 
"t"~+3"~+l' i~3A(7)q+~c33-~+~c4k,  JJ 15 + O ( 1  "~'~ t JJ (2.8) 

3. We will now consider the case of small values of the parameter ~,, i.e. the case of a relatively wide 
ring. Here  the main term of the asymptotic form of the solution of integral equations (1.11) for small 

must be constructed from solutions of the boundary-layer type, which describe the rapid variability 
of the contact pressure in the neighbourhood of the contours r = a and r = b, and the penetrating 
(degenerate) solution, which holds far from the contours r = a and r = b. This construction can have 
the multiplicatiw; from [3, 5]. 

a / o 40t5 a + arccos-- , = 4 (3.1) 
q°(r) = g262~'~_r2 a 2 r Ob8 

ql(r) t~l(r) 80r [ a ( a 2 "~ a] My M x 8 -'= = ,-------- J ~ / 1  - ----v| + arccos--/, 
~ n2flb 2 _ r  2 L4r  2 _ a  2 ~. 3r')  r J  0 - ~ a = 0 - ~ 3 ~ = ~  

or the additive from [3, 5] 

( 1  1+1~2-21] 2)  2 0 ~ i l n l + e  208 1 - ~ arccos ~ ---~ + 
q°(r) = g ~  ~2 F2~_a2 l--e 

(3.2) 
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Q = 4 ( 2 a r c c o s e + l  l_af~-~e2 in I+E'~ (3.3) 
0b~ ~ 1 - e ) 

q!(r)_  ~l(r) 40r (1 _ larccos 
I x 

l+e21 - - 2rl2 ) + t ~  2 

40r in l+E+b2  ( l - e 2  l + c  3] 
÷ X 2 ~  1-'--~ -~'~ 2 InI_E-E 

Ob3  = arcc°s  
2n 4x ,- -. i_ _I 

(3.4) 

In (3.3) and (3.4) we have introduced the notation e = a/b and rl = a/r, and the expressions for Q, 
My and Mx were obtained from (1.12). 

If the inclination of the punch is due to the fact that the applied force Q is off-centre, as shown in 
Fig. 1, and it has no initial inclination, then, from (2.6) and (2.7) or (3.1) and (3.2) or (3.3) and (3.4) 
we can formulate the condition for the foot of the punch not to lose contact with the base. For example, 
using (3.1) and (3.2) with [3 = 0, Mx -- 0and t~l(r) ~ 0 we obtain 

] e -< I- arccos e ~ 3 arccos e (3.5) 

where e is the eccentricity of the application of the force Q (its distance from the axis of symmetry of 
the punch). 

4. We will describe in more detail one more method of constructing the asymptotic solution of the 
problem for small ~., which was mentioned in [4]. 

We will start from the integral equations (2.3). Note that the kernels Mm(t) (m = 0, 1) of these 
equations can be written, by virtue of (1.8), in the form 

Mm(t)= 7 Lm(S)c°sstds (4.1) 
o $ 

If we further represent the meromorphic function Lm(s) in the form of the principal values [10], we 
can obtain the following expansion for the kernels 

n=0 (2n+2m)!!(2n)!! e x p -  2n+m+ Itl (4.2) 

We will first consider the first equation of (2.3). It can be shown that' the sum of the functions 
~1[(1 + x)/~,] and ~2[1 -x)/~.], which yields a solution of the system of integral equations 

(4.3) 

S ~2 M0 d~=~)~exp + ~l M0 d R (--oo<x~< 1) 

will also be a solution of the first equation of (2.3), i.e. 
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(4.4) 

Hence, the problem reduces to finding the asymptotic solution for small 2~ of the system of equations 
(4.2). 

By obvious changes of the variables we can convert Eqs (4.3) to the form 

, 0 ° , , - >  
0 21k 

i l~2(x)Mo(t-'Od%=ltel/~'e-t/2+2i~l(X)Mo(t+x-~)d'c, (0 ~< t<**) 
(4.5) 

From the meaning of the problem ~ l ( t )  - -  e -~, ~: > 0 as t ~ **. Hence, the integral on the right-hand 
side of the second equation of (4.5) for small 7~ is exponentially small and, in the zeroth (main) 
approximation, ill can be neglected compared with the first term on the right-hand side. Then, to 
determine ~2(t) we have a Wiener-Hopf integral equation [11], where the function Lo(s) of the form 
(1.8) is easily factorized. As a result we have [4] 

42 (t) = 2~-le I/~'e -3t/2 (1 - e -2t)-~ (4.6) 

Substituting (4.6) into the first equation of (4.5) and evaluating the integral on the right-hand side 
using expansion (4.2) we again arrive at a Wiener-Hopf equation in the function ~l(t) 

7 ~,('C)Mo(t-x)dx=e -2'x ~. [(2n-1)!! ]  2 1 e_t(2.+y~) 
o .=oL (2n)!! J n + l  (0~<t<==) (4.7) 

Its solution has the form [4] 

m 

i.l(t)= 2.2..e_2/~.e_3.2q_e_2:)_~ y. (2n-  1)!! 
/t 2 ' n=o (n + 1)(2n)!! 

F ( - n , l , l , 1 -  • -2. ) (4.8) 

Hence, the p~lcipal term of the asymptotic form of the solution of the first integral equation of (2.3) 
for small ~, is given by (4.4), (4.6) and (4.8). 

From the first :formula of (1.12) we obtain 

Q I r r""""r-_ + l E 2  = .f po(~)e(t+O/2Xd~ = 4 | ~ / 1 - ¢  2 arccose + 
Oh8 ~. - I  L / t  

+1£341 - £ 2 / t  n=l ~ (n+i~2-~".. - n +  1,1,3,1-1~ 2 (4.9) 

Here we have used the relation [12] 

, (l-x)-YZx-~-n,l,2,x)=2xY2(l-x))~F(-n+l,l,3,x) (4.10) 

In exactly the same way we can construct, for small ~., the principal term of the asymptotic form of 
the second integral equation of (2.3) 

I + x I - x = 41t-le3/Xe-St/2 (I - e -2t)-~ 



134 V .M.  Aleksandrov  

" F(_n ,1 ,  2 l - e  -2 , )  ~l ( t )=-~Te-2 /Xe-S t /2 (1-e -2 ' )  -~2 ~. ( 2 n -  1)!v ., 
(n + 2)(2n) I t n = O  • • 

M,. M x 8 [  l _ ~ e 2  + l e 2 ~ / l _  e2 + 3_~_e4 arccose + 
0 b J a  = ~ = 4n 

+ 3"~-e5 1 ~ - ~ -  e2 ~ 2 / t  n=l (n~) '(2"n'3 ' ' ( 2 n - l , l ,  . F ( - n  + 1, 1,~-,3 1 -  e 2 ) ]  

(4.11) 

In  conclusion we will give some numerical  results f rom the quant i t iesgl  = Q/(Ob~) andg2 = My/(0b2a) 
= Mff(0b31~), ob ta ined  f rom the fo rmulae  der ived in this p a p e r  

~. 1/2 1 2 4 
gl(2.7) 3.99 3.97 3.86 
gl(3-1) 4.00 4,00 4.00 
g1(3.3) 4,00 4,00 3.96 
g 1 (4,9) 4.00 4.00 3.96 
g2(2.8) 2.64 2.64 
g2(3.2) 2.67 2.67 2.67 2.67 
g2(3. 4) 2.67 2.67 2.66 2.63 
g2(4. I ! ) 2,67 2.67 2.66 2.64 

8 

3.63 

2,53 

I t  can be seen tha t  the asymptot ic  solutions for  large and small  k of  the  first equat ion  o f  (1.11) join 
up  when  ~. ~ [1, 2], while the second and third equat ions  o f  (1.11) join up  when  ~ ~ [2, 4]. 

This research was suppor ted  financially by the Russian Foundat ion for  Basic Research (94-0100181-1). 
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